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ABSTRACT 
The present paper describes the results of a regional analysis of peak flood flows that has 

been carried out on the basis of the data recorded in nearly 9000 gauging stations  belonging 
to different geographical areas of Europe (Italy, Switzerland, Austria, Great Britain, Portugal), 
North America (USA, Canada), Oceania (Australia) and to other sites of Africa, Asia and 
South America.  

The regionalization procedure is based on the definition of a dimensionless variable Y 
(obtained by a suitable standardization of the peak discharge) whose probability distribution 
can be assumed constant for all the considered sites.  

The probabilistic model (MG model) obtained by interpolation of the empirical non 
exceedance frequencies of the maximum values of Y observed at each gauged site gives the 
probability distribution of peak discharges for return periods ranging from 30-50 years (nearly 
equal to the average length of the considered series) up to about 4000 years. With respect to 
other probability distributions that are currently used for the same purpose, the MG model 
provides a better interpolation of the empirical non exceedance frequencies of peak 
discharges, especially for long return periods.  

The value Y=7 – corresponding to about a 4000 year return period – is the upper bound for 
which the interpolation of the frequency distribution of Y provided by the MG model can be 
considered reliable; moreover, the value Y=9 is the absolute maximum of the empirical values 
of the standardized variable with reference to the gauging stations considered in the analysis. 
These values can be assumed both to define the “predictability bound” of flood events and to 
estimate the design peak discharges in cases of particularly high risk levels. 

Keywords: peak flood flows, regional estimation, unpredictable events, maximum probable 
flood discharge 

1  INTRODUCTION 
The estimation of peak discharges to be assumed for flood protection planning is usually 

performed on the basis of return periods much longer with respect to the historical series that 
are usually available. For instance, in Italy the above mentioned return periods range from 
100 to 500 years. Another typical example is the design of dam spillways, that in Italy but 
also in other countries is usually performed on the basis of a 1000 year return period flood. 

The reliability of such estimations, referring to frequency values much smaller than the 
observed ones,  is questionable.   

Moreover, in the judicial proceedings for the assessment of the liabilities regarding the 
damage caused by floods, inundations and every other disaster resulting from the overflow of 
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rivers, it is required to establish whether the event causing the damage has to be considered 
exceptional or unpredictable according to the meaning of these terms in common speech. In 
fact, it appears that the damage caused by events that can be defined as absolutely 
unpredictable might not be charged to any subject, private or public as it may be.  

A possible way to face this problem is the definition of a limit value of peak discharge 
that can be assumed as an upper bound beyond which the estimates loose their significance 
because of the lack of exceeding data. Due to the limited size of the historical series, the 
search for this “predictability bound” requires both the analysis of flood flows recorded at as 
many gauging stations as possible and the formulation of a suitable methodology to render 
homogeneous data referring to natural systems that can vary from each other with respect to 
dimensions, climate, and physical characteristics .  1

The same strategy can be used to render more reliable the estimates of high return period 
quantiles of peak flows needed for flood protection planning.  

To this purpose, in previous papers the authors introduced a new probabilistic model 
(MG model) particularly suitable for the estimation of peak flood discharges corresponding to 
very high return periods. The formulation of the MG model is based on the definition of a 
standardized variable whose probability distribution can be assumed constant for all sites 
inside the considered regions. Moreover, the maximum observed value of the standardized 
variable was adopted to define the above mentioned limit value of peak discharges.  

The methodology was initially applied to Italian river catchments (Maione, 1997; Beretta 
et al., 2001). More recently, the authors extended the analysis considering the historical series 
of annual maximum peak flood discharges of 7300 gauging stations distributed over different 
regions of the Earth: Italy, Switzerland, Great Britain, USA and also Ethiopia and Peru 
(Majone & Tomirotti, 2004; Majone & Tomirotti, 2006).  

In this paper the study is continued including data referring to other geographical areas, 
such as Austria, Portugal, Canada and Australia; altogether, the number of considered gauging 
stations comes to more than 8500. The results of the analysis confirm the general validity of 
the MG model and of the criteria used to define the predictability bound of flood events. 

2  REGIONAL MODELS 
As mentioned above, the characterization of exceptional flood events requires the 

estimation of peak discharges corresponding to return periods much longer with respect to the 
historical series of annual maximum peak flood flows that are usually available; for instance, 
the average length of the large number of series considered in this study does not exceed 
30-40 years (as confirmed by Table I of the next section).  

A deep analysis of the difficulties arising in these kinds of extrapolations is made by 
Klemeš (2000a-b). In particular, the author characterizes the high degree of uncertainty of the 
last points of the empirical frequency curves obtained from random samples; due to this  
uncertainty, not much variable with sample size, the extrapolated tail of the frequency 
distribution does not have much credibility. 

To make more significant the estimates of high return period quantiles of peak flows and 
also to handle the case of ungauged sites, regional estimation methods are commonly used; 
the latter are based on space interpolation and extrapolation techniques of the available 
hydrological information.  

 This kind of approach was adopted by Fuller (1914) and, in Italy, by Tonini (1939) on the basis of the 1

hydrologic knowledge of that time.



The motivation of regional models is linked to the consideration that if the analysis of the 
flood events for a given river site takes into account only the data recorded in the past at the 
same site it is not very likely that the sample of available data contains some exceptional 
values, and even if such values have occurred, their statistical interpretation is a difficult task 
due to the limited size of the samples that are usually available. On the contrary, if the 
analysis extends (by means of suitable homogeneization criteria) to a large number of 
independent historical series referring to different rivers it is much more likely that several 
exceptional values will be encountered. It is presumed that more significant results will be 
obtained from this kind of analysis.  

It is well known that regionalization models based on the “index flood” method assume 
that it is possible to identify compact and sufficiently large areas that are homogeneous with 
regard to the characteristics influencing flood formation processes (morphology, geo-
lithology, land use, pluviometry, etc.) and include a large number of gauged sites. The key 
hypothesis is that this hydrologic homogeneity, which is actually defined only in qualitative 
terms, implies a well-defined statistical behaviour of peak flood discharges for the rivers 
inside the homogeneous region. In particular, it is assumed that the probability distribution of 
the standardized variable Q*=Q/µ(Q) – obtained by normalization of the annual maximum 
peak discharge Q with respect to the average of the population – is the same for all the river 
sites inside the homogeneous region. This implies the invariance of the moments of every 
order of Q*. Anyway, if all the series of Q* have an identical average (equal to unity), the 
same does not hold for the higher order moments and in particular for the coefficient of 
variation CV(Q) and for the coefficient of skewness γ(Q), if the analysis is limited to second 
and third order moments; in fact, their sample values often change in a very wide range also 
inside the homogeneous regions. 

So, since the variability of the moments implies the variability of the parameters of the 
probability distribution of Q*, the size of the error deriving from these models could be very 
large (e.g. Majone & Tomirotti, 2004).  

3  THE MG MODEL 
To overcome the previously mentioned difficulties, parametric methods can be used 

instead of index flood models. In fact, the former account also for the variability of higher 
order normalized moments by assuming a unique multi-parameter form for the probability 
distribution of the peak flood discharge. In this way, the regional estimation is achieved by 
calibrating regression formulas for the parameters in terms of geomorphoclimatic 
characteristics of the river catchments.  

The MG model has been introduced for these kinds of analysis (Maione, 1997; Beretta et 
al., 2001; Majone & Tomirotti, 2004). In this paper the validity of the model has been 
extended considering the above mentioned 8500 historical series of annual maximum peak 
discharges observed at gauging stations belonging to different geographical areas of Europe 
(Italy, Switzerland, Austria, Great Britain, Portugal), North America (USA, Canada), Oceania 
(Australia) and to other sites of Africa, Asia and South America. The location of the gauging 
stations considered in the analysis is shown in Figure 1.  

Since the attention is focused on the characterization of high return period quantiles, the 
MG model has been calibrated on the basis of the maximum values Qmax of the historical 
series. This choice allows to make more recognizable eventual trends of the data, that 
otherwise would be masked by the presence of a great amount of peak values characterized by 



very different (and smaller) return periods.  
 The selected data, after standardization with respect to the averages of the series are 

plotted in the (CV, Q/µ) plane in Figure 2a, which shows that the observations can be 
interpolated by a concave curve defined by the simple equation Q/µ=1+aCVb with the 
exponent b appreciably greater than unity (as would be the case for a Gumbel distribution) 
and equal to 1.33. 

"  
Figure 1. Location of the gauging stations considered in the analysis. 

" "  
Figure 2. Scattering of Qmax/µ data in (CV(Q), Q/µ) plane and interpolating functions (a); 
Frequency distribution of  the Y values and interpolating function (b). 

The above circumstance suggests to search for the new probabilistic model in the form  

"  ,        (1) 

where it is assumed that f(T) is a function of the return period T only. 
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It follows from (1) that a standardized variable can be introduced 

"   ,       (2) 

whose probability distribution is constant for all sites. So, grouping together the 8500 
maximum observed values of Y and estimating the empirical non exceedance frequency of 
each value, the result shown in Figure 2b is obtained. From the plot it turns out that the 
experimental data can be interpolated by a curve whose central part can be approximated by a 
linear function of ln T:  

" ,        (3) 

that in terms of the variable Q/µ becomes 

" .       (4) 

Equation (3) or, equivalently, Equation (4) yield the analytical expression of the MG 
model. Thanks to the great amount of data referring to different geographical areas of the 
Earth, the model can be considered quite general and so it can be applied to large areas such 
as Europe, Canada, USA and Australia.  

Regarding the higher values, the data lying beyond 4000 year return period are so 
scattered that the maximum value of Y for which the interpolation is reliable is nearly equal to 
7, while the maximum observed value is nearly equal to 9.  

Therefore, the MG model can be applied for return periods ranging from 30-50 years 
(nearly equal to the average length of the series considered in the calibration) up to about 
4000 years. 

From the considerations developed above, it follows that the value 

"  ,        (5) 

corresponding to about a 4000 year return period, defines the upper bound for a reliable 
statistical characterization of flood flows; moreover, the value 

"          (6) 

defines the upper bound of flood discharge beyond which the statistical estimates loose 
their significance, since no higher values of the standardized variable Y were recorded at the 
8500 gauged sites considered in the analysis.  

Figure 3 shows the behaviour of the quantiles deriving from the model (4) for some 
significant return periods. In the same plot the bound curve (6) corresponding to the 
maximum observed value Y=9 is also drawn.  
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"  
Figure 3. Q/µ quantiles deriving from the MG model and maximum probable flood in 
(CV(Q), Q/µ) plane. 

In Table I the geographical areas considered in the analysis are indicated together with 
minimum, average and maximum values of CV of the historical series (CVmin, CVavr, CVmax), 
minimum and maximum values of the catchment areas (Amin, Amax) and the maximum 
observed values (Ymax) of the standardized variable Y defined by Equation (2). 

Table I. Geographical distribution of the gauged sites considered in the analysis.   

State Continent Number 
of stations 

Average 
size of 

the 
series

CVmin CVavr CVmax
Amin 

(km2)
Amax 

(km2) Ymax

Italy Europe 249 36 0.23 0.62 1.81 6.1 70091 8.26

Switzerland Europe 143 45 0.11 0.36 0.79 39 34550 7.10

Austria Europe 83 34 0.19 0.79 1.91 10 1982 6.35

Portugal Europe 63 35 0.25 0.77 1.53 5.75 68429 6.34

Great 
Britain Europe 605 30 0.08 0.40 1.25 0.9 9948 7.81

Others Europe 101 56 0.14 0.49 1.49 23 51900 8.83

USA
North 
America 6326 40 0.12 0.78 5.14 0.0259 831031 9.15

Canada
North 
America 674 29 0.11 0.44 1.67 0.93 1270000 7.14

Australia Oceania 227 28 0.22 1.08 5.33 0.07 120000 5.16

Others
South 
America 14 30 0.17 0.33 0.55 684 4640300 5.17

Others Asia 42 36 0.16 0.64 1.55 126 1000000 6.31

Others Africa 24 46 0.19 1.12 1.61 573 22500 5.19



Figure 4 shows the comparison between the MG model and other probability 
distributions that are currently used for the statistical analysis of peak flood flows, like two-
parameter Lognormal, GEV and three-parameter Lognormal. It turns out that, with reference 
to the geographical areas considered in the study, the MG model provides a better 
interpolation of the empirical non exceedance frequencies, especially for long return periods 
and high values of CV. 

      

"    "  
Figure 4 (a-b). Empirical frequency distributions of Q/µ for different values of CV and Q/µ 
quantiles deriving from the MG model and from other probability distributions. 

"    "  
Figure 4 (c-d). Empirical frequency distributions of Q/µ for different values of CV and Q/µ 
quantiles deriving from the MG model and from other probability distributions. 

It is interesting to remark that the form of Equation (3) is practically independent of the 

ALL Varies 8551 38 0.08 0.71 5.33 0.0259 4640300 9.15



amount of gauging stations considered in the calibration and of their geographical location. To 
verify this statement, the same procedure leading to Equation (3) has been applied to single 
geographical areas. As an example, Figure 5a shows the interpolating functions of Qmax/µ data 
for Italy, Great Britain, USA and Canada; their trend is quite similar to that found for the 
whole set of the 8500 gauging stations. Defining a standardized variable Y in the same way 
adopted above and calculating the non exceedance frequencies of the Y values, the results 
shown in 5b have been obtained. It turns out that the empirical frequency distributions for the 
considered areas are in quite good agreement with the MG model (3).  

Figure 5. Scattering of Qmax/µ data for different geographical areas and interpolating curves 
(a); empirical frequency distributions of the standardized variables (b). 

4  SOME REMARKS ABOUT THE ESTIMATION OF DESIGN FLOOD 
It has been shown in the previous section that high return period peak flow quantiles QT 

can be conveniently estimated by means of the MG model (4), while maximum probable 
flood Qb can be obtained by means of Equation (6).  

The ratios Qb/QT are plotted in Figure 6 for some characteristic values of the return 
period T. They are increasing functions of CV; this trend is more apparent in the first part of 
the curves, corresponding to the CV values that are mainly of interest in practical cases 
(0<CV≤2).  

" "



"  
Figure 6. Variability of the ratios Qb/QT with respect to CV(Q). 

An interesting application of the plot concerns the definition of safety factors for the 
design of flood control in the presence of particularly high risk levels. 

As an example, as mentioned before, the design of dam spillways is often performed on 
the basis of 1000 year return period flood. Anyway, due to the large potential of damage in 
case of dam overtopping, the probable maximum flood would be a more appropriate choice. 
Supposing for instance that CV=1 for the selected river site, it turns out from the plot Qb/
Q1000=1.45. Since the discharge equation of the spillway is proportional to h3/2, where h 
denotes the head over the crest, the ratio between the head hb, corresponding to the discharge 
Qb, and the head h1000, corresponding to the discharge Q1000, is hb/h1000=1.28. Therefore, the 
head hb would be about 30% higher than the design head h1000. This conclusion could be used 
as a more rational criterion for the definition of the design freeboard. 

Both equations (4) and (6) require the estimation of µ(Q) and CV(Q). The average µ(Q) 
can be estimated also in the presence of a limited amount of data. For ungauged sites the 
estimation can be performed by means of regression equations in terms of some 
geomorphoclimatic characteristics of the river catchment or by means of a more or less 
simplified representation of rainfall-runoff  transformation (for instance the rational method).  

The estimation of CV(Q) is much more difficult. In the plot of Figure 7a the sample 
values of CV calculated for the considered sites are plotted versus the corresponding 
catchment areas. In spite of the high scattering of the data, the plot shows that, on the average, 
the highest values of CV correspond to catchment areas ranging about 100 km2. 

This nonmonotonic behaviour can be explained considering that for small areas the 
rainfall-runoff transformation is less important and the coefficient of variations of maximum 
peak flows are close to those of maximum rainfall intensities. For greater catchment areas the 
tranformation processes and the effects of space-time variability of both precipitation patterns 
and catchment conditions become more significant causing an increase of the average values 
of CV(Q). However, further increase of the drained area induces a decrease of CV; in fact, the 
modulation effect of the catchment becomes dominant with respect to the variability factors 
mentioned above. 



Figure 7. Scattering of the sample values of CV versus catchment areas (a); comparison 
between local and regional estimates of CV for some regions of the Italian territory (b). 

Due to the high scattering of the data, the plot of Figure 7a cannot be used for the 
estimation of CV in practical cases. In a previous paper (Beretta et al., 2001) the writers 
proposed, with reference to various regions of the Italian territory, regression formulas for the 
average µ(Q) and for the standard deviation σ(Q) in terms of some geomorphoclimatic 
parameters involving essentially the catchment area, pluviometric indexes (evaluated on the 
basis of the series of annual maximum daily rainfall depths) and a permeability index 
(evaluated on the basis of monthly runoff coefficients available for the gauged sites); Figure 
7b shows that useful results can be obtained from these kinds of models. This indicates that 
while the structure of the statistical distributions of high return period quantiles of peak flows 
has to be determined taking into account the data recorded over large areas, the parameter 
estimation for such distributions involves much smaller space scales.  

5  CONCLUSION 
In the paper the results of a regional analysis of peak flood flows have been presented.  
The study is based on the annual maximum peak flood flows recorded in more than 8500 

gauging stations belonging to different geographical areas of Europe (Italy, Switzerland, 
Austria, Great Britain, Portugal), North America (USA, Canada), Oceania (Australia) and to 
other sites of Africa, Asia and South America. The regionalization method is based on the 
introduction of a suitable standardized variable Y (Equation (2)), whose probability 
distribution can be assumed invariant for all the considered sites. 

The probabilistic model (Equation (3)) obtained by interpolation of the empirical non 
exceedance frequencies of the absolute maximum values of Y in each of the gauging stations 
(MG model) gives the probability distribution of peak discharges for values of return periods 
ranging from 30-50 up to 4000 years. With respect to other probability distributions that are 
currently used for the same purpose, the MG model provides a better interpolation of the 
empirical non exceedance frequencies of peak flood discharges, especially for long return 
periods and for high values of CV. 

The value Y=7 of the standardized variable – corresponding to about a 4000 year return 

"
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period – is the upper bound of the range of Y values for which the interpolation of the 
empirical frequency distribution provided by the MG model can be considered reliable. The 
value Y=9 is the absolute maximum of the empirical values of the standardized variable with 
reference to the 8500 gauging stations considered in the analysis. The corresponding peak 
discharges (Equations (5)-(6)) can be assumed both to define the “predictability bound” of 
flood events and to estimate the design peak discharges in cases of particularly high risk 
levels (e. g. in the presence of nuclear sites). 

The application of the MG model (Equation (4)) and of Equations (5)-(6) requires the 
estimation of the average µ(Q) and coefficient of variation CV(Q) of the annual maximum 
peak discharge. The major difficulties arise in the latter case, due to the limited length of the 
historical series that are usually available and to the non-stationarity effects deriving from 
anthropic factors and, eventually, from climatic changes. Anyway, while the non stationarity 
of the systems under study requires continuous updating of the estimates of µ  and CV, it 
should not affect the structure of the MG model. Probably, all the above mentioned 
difficulties could be faced by means of a combination of statistical models of both rainfall and 
flood discharges and deterministic models of rainfall-runoff transformation. 

As a final remark, the statistical characterization of high return period flood flows, which 
forms the main subject of the paper, has been made possible thanks to great amount of 
historical series that were available for the analysis. The most part of them were obtained 
from digital archives furnished by hydrological services and from free internet sites . It is 2

hoped that the increasing availability and accessibility of these kinds of data will promote 
their use for the formulation of reliable estimation models of flood flows. 
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